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ABSTRACT 

Embedded sensor networks (ESNs) are one of the prime 
candidates for widely used ubiquitous computing systems 
that will bridge the gap between computing and physical 
worlds. One of the most important generic ESN tasks is 
multi-modal sensor fusion, where data from sensors of dif-
ferent modalities are combined in order to obtain better 
information mapping of the physical world. One of the key 
prerequisites for all ESN applications, including multi-
modal sensor fusion, is to ensure that all of the techniques 
and tools are error- and fault-tolerant while maintaining 
low cost and low energy consumption. 

We address the problem of multi-modal sensor fusion 
(MSF) by developing two generic schemes that are suffi-
cient to solve the MSF problem for a majority of common 
types of sensors. The first scheme assumes binary sensors; 
the second considers multilevel sensors. For binary sen-
sors, we have developed a heterogeneous back-up scheme, 
where one type of resources is substituted with another. For 
multi-level sensor fusion, we consider a system of sensor 
readings, where the sensors are of different types. The sen-
sor readings are not completely independent in the sense 
that the computational part of the system already has a rela-
tion model that defines the correlations between different 
sensor measurements. The multi-level sensor fusion then 
exploits the correlations between the faulty measurements, 
and finds the measurement points that minimize the overall 
error of the model.  For each technique, we present effi-
cient algorithms and demonstrate their effectiveness on a 
set of benchmark examples.  

1. INTRODUCTION 

Embedded sensor network (ESN) is a large-scale distrib-
uted embedded network that consists of numerous wire-
lessly connected nodes. Each node is equipped with a cer-
tain amount of sensing, actuating, computation, communi-
cation, and storage resources. Following vision of a ubiqui-
tous computing environment [9], ESNs provide inexpen-
sive and pervasive bridge between physical and computa-
tional worlds. The bridge is built through the multi-
dimensional sensing capabilities of the nodes in the system 
(e.g., light sensing, acoustic sensing, seismic sensing) and 
collaborative computing among the nodes. At the same 

time, ESN has a number of important system design con-
siderations including low power, low cost, real-time and in 
particular, reliability and fault-tolerance. Sensor-based 
networks will often operate in potentially hostile, or at least 
unconditioned environments. They will have continuous 
mode of operation, higher structural complexity, and com-
ponents such as sensor and actuators, which have signifi-
cantly higher fault rates than the traditional semiconductor 
integrated circuits-based systems.  

We emphasize the importance of heterogeneous fault-
tolerance techniques, where a single type of resource backs 
up different types of resources. The key idea is to adapt 
application algorithms to match the available hardware and 
the applications needs. We envision that each of five pri-
mary types of resources: computing, storage, communica-
tion, sensing and actuating can replace each other with 
suitable change in application software. For example, if 
communication bandwidth is reduced and all of the compu-
tation power is available, the system can compress data 
using more computationally intensive compression 
schemes. We focus our attention on how to back-up one 
type of sensor with another. There are two main reasons for 
this decision. The first is that technology trends indicate 
that sensing has by far the highest fault rates. The second is 
that there is a wide consensus that multi-modal sensor fu-
sion is the key for successful and widespread use of em-
bedded sensor networks. 

2. FAULT-TOLERANT M ULTIM ODAL SENSOR 
FUSION FOR BINARY SENSORS 

The problem of fault-tolerant multi-modal sensor fusion for 
digital binary sensors is informally illustrated using the 
example from Fig. 1. We have a set of objects G={ A, B, C, 
D, E} . Each object has two different attributes, X and Y, 
which are observed by sensors of types x and y, respec-
tively. Each object is unique, i.e. no two objects have iden-
tical values for both, X and Y. The goal is to use the attrib-
utes X and Y to uniquely identify each object, using the 
least cost. For the sake of simplicity, we assume that both x 
and y sensors have the same cost.  

We map the objects from G into a 2-dimensional space as 
shown in Fig. 1. The sensors that observe the attribute X 
are assigned values xi, and the sensors observing Y are as-
signed values yi. The output of a sensor set to xi is 0, if the 



objects attribute is less than xi (or yi) in X (or Y) dimension, 
and is 1 otherwise. The fault model for sensor assumes a 
sensor is either functional and reports the correct value, or 
is indefinitely stuck at one value. The sensors set to values 
xi and yi are shown by the lines X=xi and Y=yi. The MSF 
problem of uniquely identifying each object in the 
2-dimensional space using minimum number of sensors 
maps to the problem of selecting the minimum number of 
lines X=xi and Y=yi such that each object is within a unique 
grid unit formed by the lines. Fig. 1a and 1b show two such 
solutions. In 1a, the solution uses two X sensors { x2, x4}  
and one Y sensor, y2. However, in 1b, the solution uses one 
X sensor x2 and two Y sensors y1 and y2. Thus, in Fig. 1b, 
the sensor y1 replaces the sensor x4 from 1a. This suggests a 
heterogeneous back up scheme for the binary multimodal 
sensor fusion, where sensors of different types replace each 
other and cover each other faults.  

In the rest of the section, we formally formulate the multi-
modal sensor assignment problem and propose an ILP for-
mulation and an efficient heuristic to solve it.  

The MULTI-MODAL SENSOR ALLOCATION 
PROBLEM can be formulated in the following way: 

INSTANCE: Set A of points pi (xi1,..,xim), in 
m-dimensional space where 1≤ i ≤n, a positive integer J, 
set H that consists of m(n-1) [m-1]-dimensional hyper-
planes, each of which is perpendicular to one of the m axes. 
Each hyperplane is separating two points pi and pj that have 
the closest coordinates along the particular axis to which 
the hyperplane is perpendicular. 

QUESTION: Find a subset of hyperplanes H, such that any 
two points pi and pj are separated by at least one of the 
selected hyperplanes and the cardinality of H is at most J. 

The proof of the NP-completeness of the MMSA problem 
is outlined in [6]. 

We have developed two different techniques to solve the 
allocation problem: ILP-based and simulated annealing 
based. ILP solvers are attractive since they guarantee opti-
mal solution. In addition, many smaller instances of practi-
cal importance can be solved using this approach. In the 
cases when ILP is not applicable, we can use simulated 
annealing as an alternative optimization mechanism. The 

ILP formulation for the problem can be stated as follows: 
INPUTS: set of N m-dimensional points pi(xi1,..., xim), 
1≤i≤n. Set of all possible tests T, with elements tk, 
1≤tk≤m(n-1). The tests tk=(l(n-1)+1)..(l+1)(n-1) test the 
values in the dimension l, 1≤l≤m, each separating two clos-
est point in that dimension. The cost of each test tk is ck.  

We define the variable Xk as follows: 

 Xk=1 if test tk is selected 

 Xk=0 otherwise. 

The objective function is to minimize the total cost of all of 
the selected tests: 
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For each pair of points, pi and pj, there should be at least 
one test that has a different outcome when applied to these 
two points. We define an auxiliary matrix A[n×k(m-1)] 
with constant elements aik, 

aik=1 if the test tk produces 1 on point pi 

aik=0 otherwise. 

We need a linear expression that produces 0, if a test pro-
duces identical results on the two points pi and pj, and 1 
otherwise. One such expression that has the required prop-
erty is Xk×(aik+ajk) × (1-aik×ajk). Therefore, to have a dif-
ferent test result on each set of two points pi and pj, we 
write the following constraints:  

For each pair of points pi and pj, 
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The simulated annealing (SA) solution uses the standard 
SA code. The four components of simulated annealing (i.e., 
moves - neighborhood structure, objective function, cool-
ing schedule, and stopping criteria) are defined for the al-
location problem. A move is the replacement of one sensor 
with another sensor of the same type. The goal is to maxi-
mize an objective function. We use the standard geometric 
cooling schedule. Finally, as a stopping criteria, we use the 
user specified number of steps in which the improvement 
did not occur. We first propose the number of sensors that 
is lower bound on the potential solution, as our initial solu-
tion. We calculate this bound assuming that all dimensions 
have the same number of sensors and each n-dimensional 
compartment will eventually contain one point. After that, 
we run the SA algorithm. During this running process, we 
modify the move so that one type of sensor can be replaced 
with another type of sensor. We accumulate statistics about 
which type of sensor helps the most to improve objective 
function after each move, and use this information to de-
cide which type of sensor to add or remove.  
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Figure 1 - An example of the M SF for  binary sensors 



3. M SF FOR M ULTI-LEVEL SENSORS 

There is a wide class of sensors that have multi-level out-
put value.  The fault model for binary output sensors repre-
sents a sensor as being stuck at one value. For multi-level 
sensors, however, a faulty sensor can have an erroneous 
value that is varying and at a different level, compared to 
the actual value. Thus, for multi-level sensor fusion, we 
consider a system of erroneous sensor readings, where the 
sensors are of different types.  The key observation is that a 
known model defines the correlations between different 
sensor measurements. This model can be either statistical 
or analytical. In the statistical modeling approach, we con-
duct a statistical learning process to find the correlation 
between the sensor readings and construct a meaningful 
model. In analytical modeling, we use the equations as the 
correlating constraints between the sensor outputs.  

Perhaps the best way to introduce our MSF approach for 
multilevel sensors is to take a closer look at a small exam-
ple. The example uses analytical models as the correlating 
system between the measurements. We have an object O 
that moves along its trajectory that includes points pi 
{ 1≤i≤k}  in an embedded sensor network that consists of a 
number of nodes. We assume that we have four types of 
sensors: RSSI-based or acoustic signal-based distance dis-
covery, speedometer, accelerometer, and compass, which 
measure the angle in a 2D physical space. Three distance 
measurements can be used to locate the object O in any 
particular moment. Euclidian space, Newton mechanics, 
and trigonometry laws can be used to establish relation-
ships between measurements of different modalities. In Fig. 
2, the moving object is a person, while the black dots rep-
resent sensors. The light shaded person shows the sampling 
points of the moving object within the field, while the pre-
sent location of the object is shown in a black shade.    

At each point, the person could communicate to the sensors 
that are within its communication range and form a multi-
lateration equation with them. The multilateration equa-
tions 1-3 are just shown here as a sample for the point 
p1(x1,y1) from which O can communicate to three nodes 
n1(s1,t1), n2(s2,t2), and n3(s3,t3) in its vicinity. R1, R2 and R3 
are the measured distances from the point p1 to the nodes 
n1, n2 and n3, respectively. 
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Assuming that at each point the person needs to do multi-
lateration with at least three nodes to get its location infor-
mation, we would have a minimum of nine equations for 
multilateration of the three points p1, p2, and p3 shown in 
Fig. 2. On the other hand, Newton Equations of Motions 

yield relationship between the measurements from the ac-
celerations (denoted by a) and velocity (denoted by v), and 
the sampling time between two consecutive points. For the 
sake of simplicity we assume that the time interval between 
two consecutive samples is fixed and is equal to ∆t. Equa-
tions 4-7 reveal the relationship between the velocity and 
acceleration, and distance between the pairs of points p1-p2 
and p2-p3 respectively. 
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In addition, compass output (denoted by z) is also related 
to the location coordinates of the points, as shown in equa-
tions 8 and 9 below. 
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The key observation is that we have more equations (15 
equations consisting of nine equations from multilatera-
tions, plus another six from Newton's equations and com-
pass) than variables (12) that may have errors. So, if one of 
sensor is not functioning, we can calculate it from the es-
tablished system of equations. Also, for each variable, we 
can find how much it has to be altered in order to make the 
whole system of equations maximally consistent. The vari-
ables that have to be altered the most are most likely meas-
ured by faulty sensors. Therefore, one way to identify and 
correct sensor measurements is to try all scenarios where 
exactly one type of sensor measurements is not taken into 
account and compare the maximal error in the system. 

Figure 2 - M ulti-level, multi-modal sensor  fusion used in 
tracking 
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4. EXPERIM ENTAL RESULTS 

The evaluation of the new approach and algorithms is a 
challenging task: the MSF problem is a NP-complete prob-
lem there are no established benchmarks and previously 
published results for the addressed problem. Nevertheless, 
it is still possible to evaluate the proposed algorithms in 
sound and convincing way. 

During the evaluation process, we evaluate the algorithms 
for sensor assignment and allocation. First, we generate an 
instance of the problem, for which the optimal solution is 
known, in the following way. We assume that the cost of 
all m types of sensors equal. We first construct a solution. 
The solution consists of the equal number of sensors in 
each direction. Next, we place exactly one object in each of 
the m-dimensional hypercube defined by the selected sen-
sors. Each object is placed in random location within the 
hypercube. It is easy to see that the selected sensors are 
optimal. We can additionally obscure solution by not plac-
ing objects in a small number of the hypercubes or by not 
using exactly the same number of sensors in each dimen-
sion. Note that we can also combine smaller arbitrary in-
stances solved by our ILP approach to create large new 
instances of the problem with known solution. 

The evaluation of the simulated annealing-based algorithm 
is shown in Table 1. The first two columns indicate the 
number of objects and the number of dimensions. The next 
three columns indicate the size of solution generated by the 
simulated annealing program in 2 minutes on 1 GHz Pen-
tium processors. The final column indicates the size of the 
optimal solution. Each row represents results from 10 dif-
ferent instance of the problem with the same characteris-
tics. 

5. RELATED WORK 

ESN have recently emerged as a premier research topic. A 
number of high profile applications for wireless sensor 
networks have been envisioned [9][3]. Fault tolerance in 
measurements by a group of sensors, was first studied by 
Marzullo [7]. Marzullo proposed a flexible control process 

program that tolerates individual sensor failures. Issues 
addressed include modifying specifications in order to ac-
commodate uncertainty in sensor values and averaging 
sensor values in a fault-tolerant way. In [5], an algorithm is 
presented that guarantees reliable and fairly accurate output 
from a number of different types of sensors when at most k 
out of n sensors are faulty. The results of the scheme are 
applicable only to certain individual sensor faults and tradi-
tional networks. However, they do not address the reliabil-
ity issues that are induced by the ad-hoc nature of the wire-
less sensor networks. 

Multi-sensor data fusion is a problem that recently has at-
tracted a great deal of attention in a number of scientific 
and engineering communities [1][8][4]. Majority of these 
works are restricted to sensor fusion of sensors of the same 
modality. Constraints, in addition to statistical models and 
analytical equations, are one of main building blocks for 
our approach. Constraint-based sensor fusion for vision has 
been advocated in [2]. 

6. CONCLUSION 

We have developed a new approach to multimodal fusion 
that is a very important task in embedded sensor networks. 
The key idea is to use one type of sensor to back-up sen-
sors of different types by exploiting flexibility during 
multi-modal sensor data fusion. We formulated the prob-
lem for two different types of sensors (binary and multi-
level), established computational complexity of associated 
problems, and have developed algorithms to solve them. 
Finally, we have demonstrated the effectiveness of our ap-
proach and algorithms on a set of illustrative examples.  
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18 26 4 800 
16 23 4 500 
18 25 3 300 
28 33 2 200 
12 15 3 100 
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Table 1 – exper imental results for  the Simulated 
Annealing (SA)-based algor ithm 


